English | 武汉大学 | 院长信箱
点击展开菜单
科研论文
当前位置: > 科学研究 > 科研论文 >

[SCI]Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment

时间:2017-05-03 来源:未知 点击:
作者:Li, TW (Li, Tongwen)[ 1 ] ; Shen, HF (Shen, Huanfeng)[ 1,2,3 ] ; Zeng, C (Zeng, Chao)[ 4 ] ; Yuan, QQ (Yuan, Qiangqiang)[ 5 ] ; Zhang, LP (Zhang, Liangpei)[ 2,6 ]
ATMOSPHERIC ENVIRONMENT
: 152 : 477-489
DOI: 10.1016/j.atmosenv.2017.01.004
出版年: MAR 2017
摘要
Fine particulate matter (PM2.5, particulate matters with aerodynamic diameters less than 2.5 mu m) is associated with adverse human health effects, and China is currently suffering from serious PM2.5 pollution. To obtain spatially continuous ground-level PM2.5 concentrations, several models established by the point-surface fusion of station measurements and satellite observations have been developed. However, how well do these models perform at national scale in China? Is there space to improve the estimation accuracy of PM2.5 concentration? The contribution of this study is threefold. Firstly, taking advantage of the newly established national monitoring network, we develop a national-scale generalized regression neural network (GRNN) model to estimate PM2.5 concentrations. Secondly, different assessment experiments are undertaken in time and space, to comprehensively evaluate and compare the performance of the widely used models. Finally, to map the yearly and seasonal mean distribution of PM2.5 concentrations in China, a pixel-based merging strategy is proposed. The results indicate that the conventional models (linear regression, multiple linear regression, and semi-empirical model) do not obtain the expected results at national scale, with cross-validation R values of 0.49-0.55 and RMSEs of 30.80-31.51 mu g/m(3), respectively. In contrast, the more advanced models (geographically weighted regression, back-propagation neural network, and GRNN) have great advantages in PM2.(5) estimation, with R values ranging from 0.61 to 0.82 and RMSEs from 20.93 to 28.68 mu g/m(3), respectively. In particular, the proposed GRNN model obtains the best performance. Furthermore, the mapped PM2.5 distribution retrieved from 3-km MODIS aerosol optical depth (AOD) products agrees quite well with the station measurements. The results also show that the approach used in this study has the capacity to provide reasonable information for the global monitoring of PM2.5 pollution in China. (C) 2017 Elsevier Ltd. All rights reserved.
关键词
作者关键词:Satellite remote sensingPoint-surface fusionAODPM2.5GRNNAssessment
KeyWords Plus:GROUND-LEVEL PM2.5REGRESSION NEURAL-NETWORKPARTICULATE MATTER PM2.5GEOGRAPHICALLY WEIGHTED REGRESSIONOPTICAL DEPTH MEASUREMENTSAIR-QUALITYPM10 CONCENTRATIONURBAN PM10MODISMODEL
作者信息
通讯作者地址Shen, HF (通讯作者)

http://images.webofknowledge.com/WOKRS524B8/images/zh_CN/expand.gif Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Hubei, Peoples R China.
地址:
http://images.webofknowledge.com/WOKRS524B8/images/zh_CN/expand.gif [ 1 ] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Hubei, Peoples R China
http://images.webofknowledge.com/WOKRS524B8/images/zh_CN/expand.gif [ 2 ] Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Hubei, Peoples R China
http://images.webofknowledge.com/WOKRS524B8/images/zh_CN/expand.gif [ 3 ] Wuhan Univ, Key Lab Geog Informat Syst, Minist Educ, Wuhan 430079, Hubei, Peoples R China
http://images.webofknowledge.com/WOKRS524B8/images/zh_CN/expand.gif [ 4 ] Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
http://images.webofknowledge.com/WOKRS524B8/images/zh_CN/expand.gif [ 5 ] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Hubei, Peoples R China
http://images.webofknowledge.com/WOKRS524B8/images/zh_CN/expand.gif [ 6 ] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China
电子邮件地址:litw@whu.edu.cnshenhf@whu.edu.cnzengchaozc@hotmail.com;yqiang86@gmail.comzlp62@whu.edu.cn
基金资助致谢

基金资助机构 授权号
National Key Research and Development Program of China  2016YFC0200900 
National Natural Science Foundation of China  41422108 
41271376 
查看基金资助信息   
出版商
PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
类别 / 分类
研究方向:Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
Web of Science 类别:Environmental Sciences; Meteorology & Atmospheric Sciences
文献信息
文献类型:Article
语种:English
入藏号: WOS:000394400000042
ISSN: 1352-2310
eISSN: 1873-2844
期刊信息
·         Impact Factor (影响因子): 3.459